Abstract

Different disease states, including diabetes, hypertension and coronary heart disease, produce distinctive microvascular pathologies. So far, imaging of the human microcirculation has been limited to vascular beds in which the vessels are visible and close to the surface (for example, nailfold, conjunctiva). We report here on orthogonal polarization spectral (OPS) imaging, a new method for imaging the microcirculation using reflected light that allows imaging of the microcirculation noninvasively through mucus membranes and on the surface of solid organs. In OPS imaging, the tissue is illuminated with linearly polarized light and imaged through a polarizer oriented orthogonal to the plane of the illuminating light. Only depolarized photons scattered in the tissue contribute to the image. The optical response of OPS imaging is linear and can be used for reflection spectrophotometry over the wide range of optical density typically achieved by transmission spectrophotometry. A comparison of fluorescence intravital microscopy with OPS imaging in the hamster demonstrated equivalence in measured physiological parameters under control conditions and after ischemic injury. OPS imaging produced high-contrast microvascular images in people from sublingual sites and the brain surface that appear as in transillumination. The technology can be implemented in a small optical probe, providing a convenient method for intravital microscopy on otherwise inaccessible sites and organs in the awake subject or during surgery for research and for clinical diagnostic applications. At present, the use of microvascular imaging in diagnosis and treatment of human disease is limited. Use has been made of nailfold capillaroscopy in the diagnosis and treatment of peripheral vascular diseases, diabetes and hematological disorders 1‐3 . Problems with movement have restricted the use of the bulbar conjunctiva for clinical applications in opthalmology 4‐6 . Other lo

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.