Abstract

In this paper, we study orthogonal nonnegative matrix factorization. We demonstrate the coefficient matrix can be sparse and low-rank in the orthogonal nonnegative matrix factorization. By using these properties, we propose to use a sparsity and nuclear norm minimization for the factorization and develop a convex optimization model for finding the coefficient matrix in the factorization. Numerical examples including synthetic and real-world data sets are presented to illustrate the effectiveness of the proposed algorithm and demonstrate that its performance is better than other testing methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call