Abstract
In this paper, we study orthogonal nonnegative matrix factorization. We demonstrate the coefficient matrix can be sparse and low-rank in the orthogonal nonnegative matrix factorization. By using these properties, we propose to use a sparsity and nuclear norm minimization for the factorization and develop a convex optimization model for finding the coefficient matrix in the factorization. Numerical examples including synthetic and real-world data sets are presented to illustrate the effectiveness of the proposed algorithm and demonstrate that its performance is better than other testing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.