Abstract

The progress in development of synthetic gene circuits has been hindered by the limited repertoire of available transcription factors. Recently, it has been greatly expanded using the CRISPR/Cas9 system. However, this system is limited by its imperfect DNA sequence specificity, leading to potential crosstalk with host genome or circuit components. Furthermore, CRISPR/Cas9-mediated gene regulation is context dependent, affecting the modularity of Cas9-based transcription factors. In this paper we address the problems of specificity and modularity by developing a computational approach for selecting Cas9/gRNA transcription factor/promoter pairs that are maximally orthogonal to each other as well as to the host genome and synthetic circuit components. We validate the method by designing and experimentally testing four orthogonal promoter/repressor pairs in the context of a strong promoter PL from phage lambda. We demonstrate that these promoters can be interfaced by constructing double and triple inverter circuits. To address the problem of modularity we propose and experimentally validate a scheme to predictably incorporate orthogonal CRISPR/Cas9 regulation into a large class of natural promoters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.