Abstract
A novel method for micro-array data classification based on orthogonal linear discriminant analysis (ODA), sequential forward floating selection (SFFS) and support vector machine (SVM) is here proposed. In this paper, in order to avoid the constraint that the dimension of the ODA subspace is bounded by the number of classes, to increase the dimension of the subspace and to improve the accuracy, we combine the “original” features to obtain new features. We combine the features in groups of K, each new feature f is obtained by the projection that maps the K-dimensional feature space to a single dimension. A feature selection algorithm is applied to select the most relevant features. Since the new features space has only few hundreds of features an exhaustive wrapper feature selection approach is used to select the set of relevant features. Finally a radial basis function SVM is trained using these features. The obtained results are very encouraging, they improve the average predictive accuracy obtained using standard feature transform techniques. Particularly interesting are the results on a breast cancer dataset, to the best of our knowledge the proposed method is the first method that, using the genes information, permits to determine with high accuracy if a person might benefit from adjuvant chemotherapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.