Abstract

We present tensor-product divergence-free and curl-free wavelets, and define associated projectors. These projectors enable the construction of an iterative algorithm to compute the Helmholtz decomposition of any vector field, in wavelet domain. This decomposition is localized in space, in contrast to the Helmholtz decomposition calculated by Fourier transform. Then we prove the convergence of the algorithm in dimension two for any kind of wavelets, and in larger dimension for the particular case of Shannon wavelets. We also present a modification of the algorithm by using quasi-isotropic divergence-free and curl-free wavelets. Finally, numerical tests show the validity of this approach for a large class of wavelets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.