Abstract

Let (V, Q) be a quadratic vector space over a fixed field. Orthogonal group 𝒪(V, Q) is defined as automorphisms on (V, Q). If Q = I, it is 𝒪(V, I) = 𝒪(n). There is a nice result that 𝒪(n) ≅ Aut(𝔬(n)) over ℝ or ℂ, where 𝔬(n) is the Lie algebra of n × n alternating matrices over the field. How about another field The answer is “Yes” if it is GF(2). We show it explicitly with the combinatorial basis ℭ. This is a verification of Steinberg's main result in 1961, that is, Aut(𝔬(n)) is simple over the square field, with a nonsimple exception Aut(𝔬(5)) ≅ 𝒪(5) ≅ 𝔖6.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.