Abstract

One of the representative methods of optical flow is a gradient method which estimates the movement of an object based on the differential of image brightness. However, the method is ineffective for large displacement of the object and many improved methods have been proposed to copy with such limitations. One of these improved techniques is the multigrid processing, which is used in many optical flow algorithms. As an alternative novel technique we have been proposing an orthogonal functional expansion method, where whole displacements are expanded from low frequency terms. This method is expected to be applicable to flow estimation with large displacement and deformation including expansion and contraction, which are difficult to cope with by conventional optical flow methods. In this paper, we apply our method to several real images in which the objects undergo large displacement and/or deformation including expansion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.