Abstract

In this paper, we overview the fundamental principles of next-generation optical Orthogonal Frequency Division Multiple Access (OFDMA)-PON systems, with a particular focus on upstream architectures capable of achieving 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">+</sup> Gb/s colorless upstream transmission. We also propose a novel OFDMA-PON architecture that satisfies these requirements and is capable of exceeding 10 Gb/s upstream transmission over a single wavelength. It is first analytically shown that optical carrier suppression at the optical network units (ONUs) combined with coherent detection at the optical line terminal (OLT) successfully eliminates both in- and cross-polarization beating noise that would otherwise be generated at the OLT and would fundamentally limit upstream transmission performance. A centralized light source OFDM-based PON architecture with source-free ONUs and OLTside coherent detection is then presented and experimentally verified to achieve 20 Gb/s/λ transmission over a class B+ optical distribution network (20 km SSMF with an additional 1:32 optical split.) By thus providing very high-speed, flexible, colorless upstream transmission, the proposed architecture is an attractive candidate for next-generation PON systems capable of cost-efficiently delivering heterogeneous services.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.