Abstract

Machine-made sand instead of natural sand has become an inevitable choice for the sustainable development of the concrete industry. Orthogonal experiment and grey correlation analysis were used to investigate the performance of machine-made tuff sand concrete. The optimal concrete mix ratio of machine-made sand was obtained by orthogonal test and its working performance was verified. Grey correlation analysis was applied to compare the factors affecting the mechanical properties of the machine-made sand concrete. The test results show that the sand rate has the greatest degree of influence on slump and slump expansion. The mineral admixture has the greatest effect on the 7-day compressive strength of the concrete. Additionally, the water–cement ratio has the greatest influence on the 28-day compressive strength. The mechanical and working properties of the machine-made sand concrete reach the optimum condition when the mineral admixture is 20%, the sand rate is 46%, the stone powder content is 10% and the water–cement ratio is 0.30. Comparing different fine aggregate concretes of similar quality, we conclude that the mechanical and working properties of tuff sand concrete and limestone sand concrete and river sand concrete are similar. The compressive strengths of the mechanism concrete show the greatest correlation with roughness and the least correlation with stone powder content. The stone powder content has almost no effect on the compressive strength of concrete when the stone powder content does not exceed a certain range. The results of the study point out the direction for the quality control of concrete with machine-made sand.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call