Abstract

Dimensional model fitting finds its applications in various fields of science and engineering and is a relevant subject in computer/machine vision and coordinate metrology. In this paper, we present two new fitting algorithms, distance-based and coordinate-based algorithm, for implicit surfaces and plane curves, which minimize the square sum of the orthogonal error distances between the model feature and the given data points. Each of the two algorithms has its own advantages and is to be purposefully applied to a specific fitting task, considering the implementation and memory space cost, and possibilities of observation weighting. By the new algorithms, the model feature parameters are grouped and simultaneously estimated in terms of form, position, and rotation parameters. The form parameters determine the shape of the model feature and the position/rotation parameters describe the rigid body motion of the model feature. The proposed algorithms are applicable to any kind of implicit surface and plane curve. In this paper, we also describe algorithm implementation and show various examples of orthogonal distance fit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.