Abstract

When the axial gain length of a stimulated Raman microscope is less than about 40% of the emission wavelength significant dipole-like ballistic backscatter will occur. Here we analyze a scanning microscope configured with orthogonal water dipping pump and probe objectives that satisfies this criterion. The pump beam focus may be a Gaussian spot or a droplet Bessel beam which minimizes the secondary Bessel beam lobes and provides multiple simultaneous pump focal spot regions. Radial and linearly polarized pump beams enable backscattered polarized signals along both transverse axes of the probe beam. Low level Mie backscatter is the primary photon noise source which should enable rapid sub-wavelength resolution 3-dimensional imaging of label-free Raman contrast for in-vivo pathology, as well as, imaging physiologic concentrations of Raman labelled metabolites and drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.