Abstract

In this paper, we present OrthoAligner, a novel method to predict the visual outcome of orthodontic treatment in a portrait image. Unlike the state-of-the-art method, which relies on a 3D teeth model obtained from dental scanning, our method generates realistic alignment effects in images without requiring additional 3D information as input and thus making our system readily available to average users. The key of our approach is to employ the 3D geometric information encoded in an unsupervised generative model, i.e., StyleGAN in this paper. Instead of directly conducting translation in the image space, we embed the teeth region extracted from a given portrait to the latent space of the StyleGAN generator and propose a novel {latent} editing method to discover a geometrically meaningful editing path that yields the alignment process in the image space. To blend the edited mouth region with the original portrait image, we further introduce a BlendingNet to remove boundary artifacts and correct color inconsistency. We also extend our method to short video clips by propagating the alignment effects across neighboring frames. We evaluate our method in various orthodontic cases, compare it to the state-of-the-art and competitive baselines, and validate the effectiveness of each component.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call