Abstract

Neurons in the suprachiasmatic nucleus (SCN) constitute the principal circadian pacemaker of mammals. In situ hybridization studies revealed expression of orphanin-FQ/nociceptin (OFQ/N) receptor (NOR) mRNA in the SCN, whereas no expression of mRNA for preproOFQ/N (ppOFQ/N) was detected. The presence of OFQ/N peptide in the SCN was demonstrated by radioimmunoassay. SCN neurons (88%) responded dose-dependently to OFQ/N with an outward current (EC50 = 22.3 nM) that was reduced in amplitude by membrane hyperpolarization and reversed polarity near the theoretical potassium equilibrium potential. [Phe1psi(Ch2-NH)Gly2]OFQ/N(1-13)NH2 (3 microM), a putative NOR antagonist, activated a small outward current and significantly reduced the amplitude of the OFQ/N-stimulated current. OFQ/N reduced the NMDA receptor-mediated increase in intracellular Ca2+. When injected unilaterally into the SCN of Syrian hamsters housed in constant darkness, OFQ/N (1-50 pmol) failed to alter the timing of the hamsters' wheel-running activity. However, injection of OFQ/N (0.1-50 pmol) before a brief exposure to light during the midsubjective night significantly attenuated the light-induced phase advances of the activity rhythm. These data are consistent with the interpretation that OFQ/N acting at specific receptors modulates the activity of SCN neurons and, thereby, the response of the circadian clock to light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.