Abstract

BackgroundExploring the microbiome in multiple body sites of a livestock species informs approaches to promote its health and performance through efficient and sustainable modulation of these microbial ecosystems. Here, we employed 16S rRNA gene sequencing to describe the microbiome in the oropharyngeal cavity, proximal colon, and vaginal tract of Jeju Black pigs (JBP), which are native to the Korean peninsula.ResultsWe sampled nine 7-month-old JBP gilts raised under controlled conditions. The most abundant phyla that we found within the oropharyngeal microbiota were Proteobacteria, Bacteroidetes, Fusobacteria and Firmicutes, collectively providing core features from twenty-five of their genera. We also found a proximal colonic microbial core composed of features from twenty of the genera of the two predominant phyla, Firmicutes, and Bacteroidetes. Remarkably, within the JBP vaginal microbiota, Bacteroidetes dominated at phylum level, contrary to previous reports regarding other pig breeds. Features of the JBP core vaginal microbiota, came from seventeen genera of the major phyla Bacteroidetes, Firmicutes, Proteobacteria, and Fusobacteria. Although these communities were distinct, we found some commonalities amongst them. Features from the genera Streptococcus, Prevotella, Bacillus and an unclassified genus of the family Ruminococcaceae were ubiquitous across the three body sites. Comparing oropharyngeal and proximal colonic communities, we found additional shared features from the genus Anaerorhabdus. Between oropharyngeal and vaginal ecosystems, we found other shared features from the genus Campylobacter, as well as unclassified genera from the families Fusobacteriaceae and Flavobacteriaceae. Proximal colonic and vaginal microbiota also shared features from the genera Clostridium, Lactobacillus, and an unclassified genus of Clostridiales.ConclusionsOur results delineate unique and ubiquitous features within and across the oropharyngeal, proximal colonic and vaginal microbial communities in this Korean native breed of pigs. These findings provide a reference for future microbiome-focused studies and suggest a potential for modulating these communities, utilizing ubiquitous features, to enhance health and performance of the JBP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call