Abstract
Idealized numerical simulations using the Weather and Research Forecast (WRF) model indicate that three flow regimes, based on the moist Froude number, can be identified for a conditionally unstable, rotational, horizontally homogeneous, uniformly stratified flow over an idealized, three-dimensional, mesoscale mountain stretched spanwise to the impinging flow: (I) a quasi-stationary upslope convective system and an upstream-propagating convective system, (II) a quasi-stationary upslope convective system, and (III) a stationary upslope convective system and a quasi-stationary downstream convective system. Several major differences from a similar type of flow with no rotation over a two-dimensional mountain range are found. One important finding is that relatively strong mean flow produces a quasi-stationary mesoscale convective system (MCS) and maximum rainfall on the windward slope (upslope rain), instead of on the mountain peak or over the lee side.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.