Abstract

Black shales from the southern Appalachian Basin and the southwest Welsh Basin have anomalous U–Pb and Nd model ages suggesting syn- and post-depositional resetting of the Sm–Nd and U–Pb isotopic systems. This alteration to the primary detrital signature of these two shale sequences is indicative of black shale diagenetic/depositional processes that obscure paleo-environmental and provenance information recorded prior to and during deposition. The trace element and isotopic signatures of these two shale sequences reveal a syn-/post-depositional history that is de-coupled from the coeval orogenic history of the region making it difficult to reconstruct the tectonic and oceanographic conditions present at the time of deposition. Both the Ordovivian Welsh Basin and the Devonian Appalachian Basin sequences host REE- and U-bearing diagenetic phosphate minerals that play a critical role in the whole rock REE and U budgets. In the Welsh Basin shales, early diagenetic apatite and a later monazite phase dominate the REE budget and cause the redistribution of REE early in the basin's history (ca. 460 Ma). This redistribution is recorded by the Sm–Nd system (450 ± 90 Ma) and the Nd model ages that are anomalously old by as much as 20% (T DM > 2.0 Ga). This early history is complicated by a Permo-Triassic fluid event affecting the whole rock U-budget and resetting the U–Pb isotopic system at 193 ± 45 Ma. The Appalachian Basin sequence appears to have a much less complicated history yet still records a significant disturbance in both the Sm–Nd isotopic system (392 ± 76 Ma) and the Pb isotopic system (340 ± 50 Ma) at about the time of deposition (ca. 365 Ma). These two sequences suggest a pattern of diagenetic disturbance common to black shales. These processes are unique to black shales and must be considered when interpreting provenance and paleo-environmental information from the black shale sequences. Although these rocks are susceptible to alteration, the alteration may provide extensive information on the post-depositional history of the basin while still retaining some primary depositional information. If black shale processes are considered during the interpretation of isotopic and trace element signatures from organic-rich shales, it may be possible to recover an extensive basin history.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call