Abstract

We used microneurography to characterize stimulus-encoding properties of low-threshold mechanoreceptive afferents in human orofacial tissues. Signals were recorded from single afferents in the infraorbital, lingual and inferior alveolar nerves while localized, controlled, mechanical stimuli were delivered to the facial skin, lips, oral mucosa and teeth. We likewise analyzed activity in these afferents during orofacial behaviors such as speech, chewing and biting. The afferents in the soft tissues functionally resemble four types described in the human hand: hair follicle afferents, slowly adapting (SA) type I and type II afferents and fast adapting (FA) type I afferents. Afferents in the facial skin, lips and buccal mucosa respond not only to contact with environmental objects, but also to contact between the lips, changes in air pressure generated for speech sounds, and to facial skin and mucosa deformations that accompany lip and jaw movements associated with chewing and swallowing. Hence, in addition to exteroceptive information, these afferents provide proprioceptive information. In contrast, afferents terminating superficially in the tongue do not signal proprioceptive information about tongue movements in this manner. They only respond when the receptive field is brought into contact with other intraoral structures or objects, e.g. the teeth or food. All human periodontal afferents adapt slowly to maintained tooth loads. Populations of periodontal afferents encode information about both which teeth are loaded and the direction of forces applied to individual teeth. Most afferents exhibit a markedly curved relationship between discharge rate and force amplitude, featuring the highest sensitivity to changes in tooth load at low forces (below 1 N). Accordingly, periodontal afferents efficiently encode tooth load when subjects first contact, hold, and gently manipulate food by the teeth. In contrast, only a minority of the afferents encodes the rapid and strong force increase generated when biting through food. We conclude, that humans use periodontal afferent signals to control jaw actions associated with intraoral manipulation of food rather than exertion of jaw power actions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.