Abstract

AbstractFor Q the variance of some centred Gaussian random vector in a separable Banach space it is shown that, necessarily, Q factors through $\ell^2$ as a product of 2-summing operators. This factorization condition is sufficient when the Banach space is of Gaussian type 2. The stochastic integral of a deterministic family of operators with respect to a Q-Wiener process is shown to exist under a continuity condition involving the 2-summing norm. A Langevin equation$$ \rd\bm{Z}_t+\sLa\bm{Z}_t\,\rd t=\rd\bm{B}_t, $$with values in a separable Banach space, is studied. The operator $\sLa$ is closed and densely defined. A weak solution $(\bm{Z}_t,\bm{B}_t)$, where $\bm{Z}_t$ is centred, Gaussian and stationary, while $\bm{B}_t$ is a Q-Wiener process, is given when $\ri\sLa$ and $\ri\sLa^*$ generate $C_0$ groups and the resolvent of $\sLa$ is uniformly bounded on the imaginary axis. Both $\bm{Z}_t$ and $\bm{B}_t$ are stochastic integrals with respect to a spectral Q-Wiener process.AMS 2000 Mathematics subject classification: Primary 60G15. Secondary 46E40; 47B10; 47D03; 60H10

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.