Abstract

The development of a resonant ionization laser ion source (RILIS) for the production of isotopically pure radioactive ion beams is reported. The application of the laser ion source calls for high elemental selectivity, high efficiency, and fast release of short-lived isotopes. A hot-cavity ion source and three Ti:sapphire lasers pulsed at a 10 kHz rate are employed for the RILIS. The Ti:sapphire lasers have been upgraded with individual pump lasers to eliminate intracavity Pockels cells and output losses due to synchronization delays. The development of ionization schemes for a wide range of elements is important to the success of Ti:sapphire-laser-based RILIS. In off-line studies with stable isotopes, resonant ionization of 14 elements has been studied, leading to new ionization schemes for ten elements. The absolute ionization efficiency of the hot-cavity RILIS has been measured to range from 0.9 % to 40 % for different elements. The mechanisms for ion transportation and confinement in the hot-cavity ion source have been studied using the temporal profiles of the laser-ionized ions. The hot-cavity RILIS has provided beams of neutron-rich \(^{83,85,86}\)Ga isotopes for beta decay studies and enabled the first measurement of the beta decay of the exotic \(^{86}\)Ga.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.