Abstract

The c-type cytochromes are haemoproteins that are subunits or physiological partners of electron transport chain components, like the cytochrome bc(1) complex or the cbb(3)-type cytochrome c oxidase. Their haem moieties are covalently attached to the corresponding apocytochromes via a complex post-translational maturation process. During our studies of cytochrome biogenesis, we uncovered a novel class of mutants that are unable to produce ornithine lipid and that lack several c-type cytochromes. Molecular analyses of these mutants led us to the ornithine lipid biosynthesis genes of Rhodobacter capsulatus. Herein, we have characterized these mutants, and established the chemical structure of this non-phosphorus membrane lipid from R. capsulatus. Ornithine lipids are known to induce potent host immune responses, including B-lymphocyte mitogenicity, adjuvanticity and macrophage activation. Yet, despite their widespread occurrence in Eubacteria, and the diverse biological effects they elicit in mammals, their physiological role in bacterial cells remained hitherto poorly defined. Our findings now indicate that under certain bacterial growth conditions ornithine lipids are crucial for optimal steady-state amounts of some extracytoplasmic proteins, including several c-type cytochromes, and attribute them a novel and important biological function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.