Abstract
Cells in mitosis were harvested from exponentially growing Chinese hamster ovary cells by the mitotic detachment technique. Immediately after harvesting, the mitotic cells were seeded in tissue culture flasks and incubated at 37°C in a CO2 incubator. Care was taken not to perturb the progression of cells through the cell cycle. At every hour after seeding for 14 h, cells were collected for analysis of cell cycle distribution, cellular polyamine content, ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (AdoMetDC) activities, and relative mRNA contents. The progression through the cell cycle was monitored by DNA flow cytometry. The putrescine, spermidine, and spermine levels were approximately doubled during the cell cycle: putrescine mainly during late S and G2, spermidine continuously during the entire cell cycle, and spermine mainly during G1 and S. The ODC activity was low in seeded mitotic cells and the enzyme was activated in late G1 and reached a plateau in S phase. A second burst in activity was observed during late S phase and maximal ODC activity was found at the S/G2 transition. The relative ODC mRNA level approximately doubled during the cell cycle and the increase in the relative level mainly took part during mid and late S phase. AdoMetDC activity increased in late G1 and a first maximum was observed during the G1/S transition. A second burst in activity was found in mid S phase. Maximal AdoMetDC activity was found in G2. The relative AdoMetDC mRNA approximately doubled during the cell cycle and the increase in the relative level mainly took place during late G1 and early S phase. Our results indicate that polyamine synthesis was regulated at transcriptional and translational/post-translational levels during the cell cycle of Chinese hamster ovary cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.