Abstract

The multifunctional biological active material design for bone tissue engineering is essential to induce osteoblast cell proliferation and attachment. Adhesion of bacteria on biomaterials to produce biofilms can be major contributors to the pathogenesis of implant material associated infections. This research work focuses on NPF& NBF elemental doping and functionalization of reduced graphene oxide using an imidazolium-based ionic liquid such as BMIM PF6 and BMIM BF4 by hydrothermal method. The resulting tri doped reduced graphene oxide (NPF-rGO and NBF-rGO) composite was further used as a scaffold for bone tissue engineering and anti-biofilm activities. The observation of the effect of NPF-rGO and NBF-rGO on the morphology, adhesion and cell proliferation of HOS cell was investigated. Moreover, the tri doped composite tested its antibiofilm properties against B. subtilis, E. coli, K. pneumoniae, and P. aeruginosa pathogenic bacteria. In-vitro studies clearly show the effectiveness of N, P, B, and F doping promoting the rGO mineralization, biocompatibility, and destruction of bacterial biofilm formation. The result of this study suggests that NPF-rGO and NBF-rGO hybrid material will be a promising scaffold for bone reaeration and implantation with a minimal bacterial infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.