Abstract
For a measure μ on ℝn (or on a doubling metric measure space) and a Young function Φ, we define two versions of Orlicz–Poincaré inequalities as generalizations of the usual p-Poincaré inequality. It is shown that, on ℝ, one of them is equivalent to the boundedness of the Hardy–Littlewood maximal operator from LΦ(ℝ,μ) to LΦ(ℝ,μ), while the other is equivalent to a generalization of the Muckenhoupt Ap-condition. While one direction in these equivalences is valid only on ℝ, the other holds in the general setting of doubling metric measure spaces. We also characterize both Orlicz–Poincaré inequalities on metric measure spaces by means of pointwise inequalities involving maximal functions of the gradient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of Edinburgh: Section A Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.