Abstract

Recent studies evidenced the emergence of asymmetric electron transport in layered conductors owing to the interplay between electrical conductivity, magnetization, and the spin Hall or Rashba-Edelstein effects. Here, we investigate the unidirectional magnetoresistance (UMR) caused by the current-induced spin accumulation in Co/Pt and CoCr/Pt bilayers. We identify three competing mechanisms underpinning the resistance asymmetry, namely, interface and bulk spin-dependent electron scattering and electron-magnon scattering. Our measurements provide a consistent description of the current, magnetic field, and temperature dependence of the UMR and show that both positive and negative UMR can be obtained by tuning the interface and bulk spin-dependent scattering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call