Abstract

As is the case for the assembly of protein components of the membranes in animal mitochondria, the bilayer phospholipids arise from a complicated interplay of intra- and extra-mitochondrial reactions. Our early studies indicated that the bulk of mitochondrial phospholipids (typified by phosphatidylcholine) had their origin in the endoplasmic reticulum and were transported to the mitochondria as complexes with phospholipid-exchange proteins. The polyglycerophosphatides (typified by diphosphatidylglycerol) were apparently synthesized in situ by intramitochondrial membrane-bound enzymes using CDP-diglycerides as intermediates. The case for the precursors in the latter pathway is less clear, although evidence has been presented for dual localization of enzymes for glycerophosphate acylation and CTP:phosphatidate cytidylyl transfer in both mitochondria and microsomes. Phosphatidylethanolamine also shows evidence for two sites of origin: by translocation from its site of synthesis in the endoplasmic reticulum and by translocation of phosphatidylserine followed by decarboxylation within the mitochondria. In the latter case mitochondrial phosphatidylserine decarboxylase may play an important role in the regulation of phospholipid metabolism throughout the cell.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.