Abstract
Thin films can develop large residual stresses during their growth that significantly impact their performance. Therefore, there is a need to understand how the stress is related to the developing film structure and underlying kinetic processes. In this work, we describe measurements of stress and the corresponding grain structure during electrodeposition of Ni and Cu films. For Ni deposition, the grain size stays nearly constant during growth and the stress reaches a nearly constant steady-state. For Cu deposition, the grain size grows as the thickness increases and the microstructural evolution affects the evolution of the stress. To remove the effect of subsurface grain growth on the stress, measurements were also done with periodic pauses that allowed the stress induced by grain growth to saturate. We interpret the results in terms of a kinetic model for stress evolution that focuses on the developing boundary between adjacent grains while the film is deposited. The effect of grain growth on stress for different types of microstructural evolution is also discussed. After accounting for the stress from subsurface grain growth, the results are consistent with the model for the dependence on growth rate and grain size at the surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.