Abstract

The selective androgen receptor modulator, (S)-(7-cyano-4-(pyridin-2-ylmethyl)-1,2,3,4-tetrahydrocyclopenta[b]indol-2-yl)carbamic acid isopropyl ester, LY2452473, is a promising treatment of side effects of prostate cancer therapies. An acid-catalyzed Fischer indolization is a central step in its synthesis. The reaction leads to only one of the two possible indole regioisomers, along with minor decomposition products. Computations show that the formation of the observed indole is most favored energetically, while the potential pathway to the minor isomer leads instead to decomposition products. The disfavored [3,3]-sigmatropic rearrangement, which would produce the unobserved indole product, is destabilized by the electron-withdrawing phthalimide substituent. The most favored [3,3]-sigmatropic rearrangement transition state is bimodal, leading to two reaction intermediates from one transition state, which is confirmed by molecular dynamics simulations. Both intermediates can lead to the observed indole product, albeit through different mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call