Abstract
It is commonly believed that the spontaneous p-doping in Sn-based perovskites is caused by Sn vacancies. By performing rigorous first-principles calculations for a prototypical Sn-based perovskite CsSnI3 , we reveal that, in fact, the defects dominating p-doping are Cs vacancies. The reason that adding extra Sn2+ could reduce p-doping is that Cs and Sn present the same changing trend in terms of chemical potentials, and thus inhibiting the formation of Sn vacancies will also limit the formation of Cs vacancies. Moreover, we show that I vacancies are the dominant nonradiative recombination centers, and can result in sizable nonradiative losses, which explains why the experimentally measured carrier lifetime is only a few nanoseconds even if p-doping is suppressed. This work provides new insights into the origins of p-doping and nonradiative recombination in CsSnI3 , and suggests that minimizing the formation of Cs and I vacancies is critical to realizing the best device performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.