Abstract
There are many viewpoints about the sources of groundwater in the Badain Jaran Desert (BJD), such as precipitation and snowmelt from the Qilian Mountains (the upper reaches [UR] of the Heihe River Basin [HRB]) and precipitation from the BJD and the Yabulai Mountains. To understand the source of the groundwater of the BJD and their possible associations with nearby bodies of water, we analyzed variations of stable isotope ratios (δD and δ(18) O) and the deuterium excess (d-excess) of groundwater and precipitation in the BJD, of groundwater, precipitation, river and spring water in the UR, and of groundwater and river water in the middle and lower reaches (MR and LR) of the HRB. In addition, the climatic condition under which the groundwater was formed in the BJD was also discussed. We found obvious differences in δD, δ(18) O, and d-excess among groundwater in the BJD, nearby water bodies and the HRB. The groundwater δD-δ(18) O equation for the BJD was δD = 4.509δ(18) O-30.620, with a slope and intercept similar to that of nearby areas (4.856 and -29.574), indicating a strong evaporation effect in the BJD and its surrounding areas. The equation's slope of the BJD was significantly lower than those of HRB groundwater (6.634), HRB river water (6.202), precipitation in the BJD and Youqi (7.841), and the UR of the HRB (7.839). The d-excess (-17.5‰) of the BJD was significantly lower than those of nearby groundwater (-7.4‰), HRB groundwater (12.1‰), precipitation in the BJD (5.7‰) and in the UR of the HRB (15.2‰), and HRB river water (14.4‰). The spatial patterns of δ(18) O and d-excess values in the BJD suggest mixing and exchange of groundwater between the BJD and neighboring regions, but no hydraulic relationship between the BJD groundwater and water from more distant regions except Outer Mongolia, which is north of the BJD. Moreover, we conclude that there is little precipitation recharge to groundwater because of the obvious d-excess difference between groundwater and local precipitation, low precipitation, and high evaporation rates. The abnormally negative d-excess values in groundwater of the BJD indicate that this water was formed in the past under higher relative humidity and lower temperatures than modern values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.