Abstract
Restriction enzyme analysis of ribosomal DNA (rDNA) and chloroplast DNA (cpDNA) is used to assess the relative contribution of hybridization and mutation as sources of genotypic variation in weedy asexual dandelions, with focus on the dandelion flora of North America. Of 318 North American dandelions surveyed, 145 rDNA-cpDNA clones are detected. The combined rDNA-cpDNA genotypes show that most of the polymorphic rDNA and cpDNA restriction sites or lengths in these plants are also present in weedy asexual dandelions collected from natural populations in Europe and in asexual and diploid taxa (microspecies) chosen to represent diverse Eurasian members of the genus. However, of 222 combined rDNA-cpDNA genotypes found in 427 asexual plants surveyed, only 9 genotypes are found in both North American and Eurasian dandelions. Two rDNA and three cpDNA characters are unique to individual plants in North America and are consistent with mutational origins of genotypic variation in asexual lineages. But the array of genotypic diversity, characterized by different combinations of the rDNA and cpDNA characters, show that multiple hybridization events are a more important source of genotypic variation than mutation in the asexual polyploids. The rDNA and cpDNA data also indicate polyphyletic origin of several asexual Taraxacum taxa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Evolution; international journal of organic evolution
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.