Abstract

AbstractDacitic to rhyolitic glass shards from 80 widespread tephras erupted during the past 5 Mys from calderas in Kyushu, and SW, central, and NE Japan were analyzed. Laser ablation inductively coupled plasma mass spectrometry was used to determine 10 major and 33 trace elements and 207Pb/206Pb‐208Pb/206Pb isotope ratios. The tephras were classified into three major geochemical types and their source rocks were identified as plutonic, sedimentary, and intermediate amphibolite rocks in the upper crust. A few tephras from SW Japan were identified as adakite and alkali rhyolite and were regarded to have originated from slab melt and mantle melt, respectively. The Pb isotope ratios of the tephras are comparable to those of the intermediate lavas in the source areas but are different from the basalts in these areas. The crustal assimilants for the intermediate lavas were largely from crustal melts and are represented by the rhyolitic tephras. A large heat source is required for forming large volumes of felsic crustal melts and is usually supplied by the mantle via basalt. Hydrous arc basalt formed by cold slab subduction is voluminous, and its heat transfer with high water content may have melted crustal rocks leading to effective felsic magma production. Coincidence of basalt and felsic magma activities shown by this study suggests caldera‐forming eruptions are ultimately the effect of a mantle‐driven cause.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call