Abstract

AbstractOne limiting phenomenon for the cycle life of metal–oxygen batteries is the growth of dendrites during metal plating (cell charging). For the relatively new sodium–oxygen cell, this subject has been scarcely investigated, until now. Therefore, dendrite formation is systematically investigated herein, with the aim of gaining a more detailed understanding of the underlying mechanisms and relevant control parameters. Electrochemical impedance spectroscopy, cycling experiments, and optical characterization techniques are applied in situ and ex situ; sodium dendrite growth is directly visualized, for the first time, by means of a tubular glass cell. The growth of instable surface morphologies is discussed from a theoretical perspective to comprehend the experimentally observed dendrite growth. Furthermore, countermeasures against issues with dendrites are discussed, with the aim of increasing the cycle life of sodium–oxygen batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.