Abstract

The spectrum scanned by a Fourier transform spectrometer (FTIR) often has a baseline drift. However, baseline distortion rarely occurs in a laboratory owing to the insignificant effects of environmental vibrations and electromagnetic factors. Even if it occurs, the distorted spectrum can be manually eliminated. However, in a complex environment, especially after the long-term operation of a spectrometer, the scanned spectrum may be distorted to different degrees. Herein, the origins of spectral baseline drifts and distortions are analyzed and simulated using MATLAB; furthermore, a baseline correction method based on the baseline-type model is proposed. The results of experiments performed on the methane spectrum confirm that the proposed method outperformed the improved modified multi-polynomial fitting and iterative averaging methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.