Abstract
The phenomenon of “anomalous” micellization is investigated in dilute solutions of two nearly symmetric poly(styrene-b-isoprene) diblock copolymers, via dynamic light scattering. In two polystyrene-selective solvents, diethyl phthalate and dimethyl phthalate, the critical micelle temperatures (cmt) are clearly determined by rather abrupt increases in the hydrodynamic radius and scattered intensity upon cooling; this corresponds to “normal” micellization. In contrast, for the same polymers dissolved in two polyisoprene-selective solvents, tetradecane and squalane, anomalous micellization was consistently observed: the hydrodynamic radius exceeded 1000 A and the intensity was unusually large, over a modest temperature interval just above the cmt. We propose that anomalous micellization is due to the incipient phase separation of small amounts of polystyrene homopolymer, resulting from incomplete crossover during the sequential anionic polymerization of styrene and isoprene. In one sample, the presence of h...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.