Abstract

Rice is a staple food for the majority of the world’s population. Whereas Asian rice (Oryza sativa) has been extensively studied, the exact origins of African rice (Oryza glaberrima) are still contested. Previous studies have supported either a centric or a non-centric geographic origin of African rice domestication. Here we review the evidence for both scenarios through a critical reassessment of 206 whole genome sequences of domesticated and wild African rice. While genetic diversity analyses support a severe bottleneck caused by domestication, signatures of recent and strong positive selection do not unequivocally point to candidate domestication genes, suggesting that domestication proceeded differently than in Asian rice–either by selection on different alleles, or different modes of selection. Population structure analysis revealed five genetic clusters localising to different geographic regions. Isolation by distance was identified in the coastal populations, which could account for parallel adaptation in geographically separated demes. Although genome-wide phylogenetic relationships support an origin in the eastern cultivation range followed by diversification along the Atlantic coast, further analysis of domestication genes shows distinct haplotypes in the southwest—suggesting that at least one of several key domestication traits might have originated there. These findings shed new light on an old controversy concerning plant domestication in Africa by highlighting the divergent roots of African rice cultivation, including a separate centre of domestication activity in the Guinea Highlands. We thus suggest that the commonly accepted centric origin of African rice must be reconsidered in favour of a non-centric or polycentric view.

Highlights

  • ObjectivesThis study has aimed to resolve some of the confusion introduced in this debate

  • History and relevanceRice is the world’s most important cereal crop

  • The ratio of synonymous to non-synonymous substitutions and the relative proportion of protein coding variation appear to be roughly the same. Both O. barthii and O. glaberrima are predominantly selfing plants, which is reflected in their low levels of heterozygosity, averaging around 5%

Read more

Summary

Objectives

This study has aimed to resolve some of the confusion introduced in this debate

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.