Abstract

Infrared scattering-type near-field optical microscopy, IR s-SNOM, and its broadband variant, nano-FTIR, are pioneering, flagship techniques for their ability to provide molecular identification and material optical property information at a spatial resolution well below the far-field diffraction limit, typically less than 25 nm. While s-SNOM and nano-FTIR instrumentation and data analysis have been discussed previously, there is a lack of information regarding experimental parameters for the practitioner, especially in the context of previously developed frameworks. Like conventional FTIR spectroscopy, the critical component of a nano-FTIR instrument is an interferometer. However, unlike FTIR spectroscopy, the resulting interference patterns or interferograms are typically asymmetric. Here, we unambiguously describe the origins of asymmetric interferograms recorded with nano-FTIR instruments, give a detailed analysis of potential artifacts, and recommend optimal instrument settings as well as data analysis parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.