Abstract

It is of practical importance to lead laboratory-scale experiments allowing a better understanding of the impact of commercial fuels composition on the formation of combustion residues such as soot particles. To this end, a hybrid burner has been designed recently to burn high-speed sprays of small liquid fuel droplets. It consists of a Holthuis (previously McKenna) burner originally equipped with a direct injection high efficiency nebulizer for the atomization of liquid hydrocarbons. A detailed description of this original setup is given in this paper. A priori estimations of atomization and evaporation times and length scales are then proposed and compared with experimental data. Droplet-size distribution measurements obtained in nonreacting conditions using a Malvern Spraytec particle sizer are presented and compared with values estimated by calculation. Cold sprays contours and liquid jet lengths in flames determined by Mie scattering at 532 and 1064 nm, respectively, are also presented. The results discussed in this work indicate that the hydrodynamic characteristics of the sprays generated with our system are relatively independent of the physical properties of fuels leading to comparable flames with identical liquid jet lengths, dimensions, and global structure. This feature facilitates an accurate comparison of flames burning various liquid hydrocarbons, which is of interest to emphasize differences in pollutants emissions and to highlight chemical effects for soot formation analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call