Abstract

Novel functionalized nanoporous polymeric materials could be derived from poly(D,L-lactide)-block-polystyrene (PLA-b-PS) diblock copolymers with a sulfonyl group at the junction between both blocks were synthesized by a combination of ring-opening polymerization (ROP) and atom transfer radical polymerization (ATRP) using a synthetic difunctional initiator through a three-step sequential methodology. Different ω-bromo PLA polymers with various molar masses ranging from 3640 to 11,440gmol−1 were first produced by coupling ω-hydroxy PLA precursors to a chlorosulfonyl-functionalized ATRP initiator previously prepared, thus leading to the formation of suitable macroinitiators for the subsequent ATRP polymerization of styrene. Consequently, PLA-b-PS diblock copolymers were obtained with a finely tuned PLA volume fraction (fPLA) in order to develop a microphased-separation morphology. The resulting copolymers as well as the intermediate compounds were carefully analyzed by size exclusion chromatography and 1H NMR. Upon shear flow induced by a channel die processing, oriented copolymers were generally afforded as characterized by small-angle-X-ray scattering (SAXS). Such copolymers were finally submitted to mild alkaline conditions so as to hydrolyze the sacrificial PLA block, and the presence of the sulfonic acid functionality on the pore walls of the resulting nanoporous materials was evidenced by means of a post-modification reaction consisting in the corresponding sulfonamide formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call