Abstract

Abstract UV-curable acrylates are the base for a large and growing product group within the coatings industry. Traditional chemical catalysis is poorly suited for acrylation reactions since these require low temperatures to avoid polymerization. In this study, immobilized Candida antarctica lipase B has been used to efficiently acrylate four polymers through transesterification of ethyl acrylate, via a solvent-free process using continuous distillation. The four products were based on three polyesters and one polyether, which represent two major classes of acrylates used in coatings today. The performance of the products was estimated with regard to curing rate, hardness, and chemical-resistance. While each product by itself had some weakness, a combination of acrylated polyether and polyester produced an adequate curing rate, good hardness, and excellent chemical-resistance properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.