Abstract

Origin recognition complex subunit 1(ORC1) is reported to be closely associated with the cell cycle. However, studies on the role of ORC1 in glioma remain undefined. The aim of the present study was to determine whether ORC1 affects cell migration, invasion, apoptosis, and proliferation and to explore the possible underlying mechanism. GEO database analysis indicated that ORC1 was significantly upregulated in glioma, while Gene set enrichment analysis (GSEA) analysis indicated that ORC1 primarily regulated the cell cycle and affects apoptotic signaling pathways. Analysis of protein-protein interaction (PPI) and gene ontology (GO) to further study the relevant mechanisms revealed that the function of the interaction between proteins and ORC1 was primarily concentrated in the regulation of cell cycle, and apoptosis played a critical role in the whole PPI network. Western blot assay and RT-PCR assay indicated that ORC1 was significantly upregulated in glioma tissues. Western blot assay and RT-PCR indicated that ORC1 was significantly upregulated in glioma cell lines. Cell migration, invasion, apoptosis, and proliferation were detected using Transwell and wound healing assays, flow cytometry, colony formation, and CCK8, respectively. Furthermore, OCR1 inhibition reduced invasion and migration, promoted cell apoptosis. In addition, OCR1 overexpression promoted cell proliferation and induced G2 phase arrest. Moreover, OCR1 downregulation suppressed activation of the ERK/JNK signaling pathway. The effects of ORC1 on biological processes were reversed by ERK and JNK inhibitors. These results indicate that ORC1 could be a novel prognostic marker of glioma via the activation of the ERK/JNK signaling pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call