Abstract

Using plane-wave pseudopotential density functional theory calculations, we have investigated the behaviors of neutral interstitials and vacancies at the amorphous-crystalline (a–c)Si interface. A continuous random network model is employed in the construction of defect-free a-c interface structure. We find that both vacancies and interstitials prefer to reside on the amorphous side of the interface. In both cases, the most stable defects occur 3–4Å from the a-c interface. Vacancy stabilization is found to be due to strain relief provided to the substrate lattice while interstitial stabilization is due largely to bond rearrangement arising from interstitial integration into the substrate lattice. We also discuss the effect of the “spongelike” behavior of the amorphous phase toward native defects on ultrashallow junction formation in the fabrication of ever-shrinking electronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.