Abstract
The origin of the temperature dependence of kinetic isotope effects (KIEs) in enzyme reactions is a problem of general interest and a major challenge for computational chemistry. The present work simulates the nuclear quantum mechanical (NQM) effects and the corresponding KIE in dihydrofolate reductase (DHFR) and two of its mutants by using the empirical valence bond (EVB) and the quantum classical path (QCP) centroid path integral approach. Our simulations reproduce the overall observed trend while using a fully microscopic rather than a phenomenological picture and provide an interesting insight. It appears that the KIE increases when the distance between the donor and acceptor increases, in a somewhat counter intuitive way. The temperature dependence of the KIE appears to reflect mainly the temperature dependence of the distance between the donor and acceptor. This trend is also obtained from a simplified vibronic treatment, but as demonstrated here, the vibronic treatment is not valid at short and medium distances, where it is essential to use the path integral or other approaches capable of moving seamlessly from the adiabatic to the diabatic limits. It is pointed out that although the NQM effects do not contribute to catalysis in DHFR, the observed temperature dependence can be used to refine the potential of mean force for the donor and acceptor distance and its change due to distanced mutations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.