Abstract

A recent study of substituted face-to-face benzene dimers by Lewis and co-workers [J. Am. Chem. Soc. 2011, 133, 3854-3862] indicated a surprising enhancement of electrostatic interactions for both electron-withdrawing and electron-donating substituents. Here we demonstrate that charge penetration (an attractive electrostatic interaction arising from the overlap of the electron densities on the two monomers) is the cause of this counterintuitive effect. These charge penetration effects are significant at typical π-π interaction distances, and they are not easily described by multipole models. A simple measure of a substituent's electron-donating or electron-withdrawing character, such as the Hammett parameter σ(m), is unlikely to capture subtle charge penetration effects. Indeed, correlation of the relative total energies or relative electrostatic energies with ∑σ(m) breaks down for multiply substituted face-to-face benzene dimers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.