Abstract

Theoretical explanation of the super-resolution imaging by contact microspheres created a point of attraction for nanoimaging research during the last decade with many models proposed, yet its origin remains largely elusive. Using a classical double slit object, the key factors responsible for this effect are identified by an ab initio imaging model comprising object illumination, wave scattering, and image reconstruction from the diffracted far fields. The scattering is found by a full-wave solution of the Maxwell equations. The formation of super-resolved images relies on coherent effects, including the light scattering into the waves circulating inside the microsphere and their re-illumination of the object. Achieving the super-resolution of the double slit requires a wide illumination cone as well as a deeply sub-wavelength object-to-microsphere separation. The resultant image has a significantly better resolution as compared to that from the incoherent imaging theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call