Abstract

Formation of the Solar System from heterogeneous debris of a supernova (SN) that exploded 5 billion years ago was recorded as (1) inter-linked chemical and isotopic heterogeneities in meteorites, (2) higher levels of extinct nuclides in grains that trapped larger isotopic anomalies, (3) the physical properties of grains mentioned in part (2), and (4) patterns of isotopic anomalies in meteorites, in the solar-wind, and in solar flare particles. The Sun formed on the SN core, and planets formed in a rotationally-supported, equatorial disk of SN debris. Interiors of the Sun and the inner planets accreted first in a central, Fe-rich region surrounding the SN core. These were layered as condensate from other parts of the SN fell toward the condensing Sun. Elements in outer SN layers formed low-density, giant Jovian planets. Intra-solar diffusion enriches hydrogen and lighter isotopes of individual elements at the Sun's surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.