Abstract

Recent studies have indicated that the unfolded states of polypeptides contain a substantial amount of polyproline type II (P(II)) structure. This energetically and structurally preorganized state may contribute to the reduction of the folding search, as well as to the recognition of intrinsically unstructured proteins and polyproline ligands. Using Monte Carlo simulations of natively unfolded peptides in the presence of explicit aqueous solvation, we observe that residue-specific P(II) conformational propensity is the result of the modulation of polypeptide backbone hydration by a proximal side-chain. Such a mechanism may be unique among those that contribute to the modulation of secondary structures in proteins. The calculated conformational propensities should prove useful for the development of a configurational P(II) scale necessary for the prediction and design of natural-like polypeptides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.