Abstract

The age-hardening response during the heat-treatment process of Al–Cu alloys is significantly and nonlinearly influenced by the type and size of metastable precipitates formed. In Al–Cu alloys, a semicoherent θ′ phase, usually observed after the formation of coherent Guinier–Preston (GP) zones during aging, is the key strengthening precipitate. Thus, identifying the energetics of preferential nucleation of these precipitates is essential for clarifying the optimal conditions for the formation of precipitates that effectively contribute to hardening. In this study, using classical nucleation theory (CNT) along with a recently developed machine-learning-based interatomic potential with near first-principles accuracy, we characterized the nucleation preference of coherent GP zones and semicoherent θ′ nanoprecipitates in Al–Cu alloys at various temperatures and solute concentrations. Our atomistically informed CNT model revealed the overall temperature and solute-concentration dependencies of the nucleation barriers of the nanoprecipitates, which determine the crossover temperatures at which the ease of formation of each precipitate alternates at the solute concentration of interest. The predicted results were in good agreement with the previous experimental observations. The findings of this study contribute to furthering the understanding of the driving forces for nucleation of precipitates in Al–Cu alloys at an atomic level and provide theoretical guidance for identifying the optimal age-hardening response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.