Abstract

For small tension the response of a solid to an applied stress is given by Hooke’s law. Outside this linear regime the relation between stress and strain is no longer universal and at present there is no satisfactory insight on how to connect for disordered materials the stress-strain relation to the microscopic properties of the system. Here we use atomistic computer simulations to establish this connection for the case of silicate glasses containing alkali modifiers. By probing how in the highly non-linear regime the stress-strain curve depends on composition, we are able to identify the microscopic mechanisms that are responsible for the complex dependence of stress on strain in these systems, notably the presence of an unexpected quasi-plateau in the tangent modulus. We trace back this dependence to the mobility of the modifiers which, without leaving their cage or modifying the topology of the network, are able to relieve the local stresses. Since the identified mechanism is general, the results obtained in this study will also be helpful for understanding the mechanical response of other disordered materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.