Abstract

Volcanic-ash clouds can be fed by an upward-directed eruption column (Plinian column) or by elutriation from extensive pyroclastic flows (coignimbrite cloud). There is considerable uncertainty about which mechanism is dominant in large-scale eruptions. Here we analyze in a novel way a comprehensive grain-size database for pyroclastic deposits. We demonstrate that the Mount Pinatubo climactic eruption deposits were substantially derived from coignimbrite clouds, and not only by a Plinian cloud, as generally thought. Coignimbrite ash-fall deposits are much richer in breathable ,10 mm ash (5‐25 wt%) than pure Plinian ash at most distances from the source volcano. We also show that coignimbrite ash clouds, as at Pinatubo, are expected to be more water rich than Plinian clouds, leading to removal of more HCl prior to stratospheric injection, thereby reducing their atmospheric impact.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.