Abstract

Sulfonamides are synthetic chemotherapeutic agents that work as competitive inhibitors of the di-hydro-pteroate synthase (DHPS) enzyme, encoded by the folP gene. Resistance to sulfonamides is widespread in the clinical setting and predominantly mediated by plasmid- and integron-borne sul1-3 genes encoding mutant DHPS enzymes that do not bind sulfonamides. In spite of their clinical importance, the genetic origin of sul1-3 genes remains unknown. Here we analyze sul genes and their genetic neighborhoods to uncover sul signature elements that enable the elucidation of their genetic origin. We identify a protein sequence Sul motif associated with sul-encoded proteins, as well as consistent association of a phosphoglucosamine mutase gene (glmM) with the sul2 gene. We identify chromosomal folP genes bearing these genetic markers in two bacterial families: the Rhodobiaceae and the Leptospiraceae. Bayesian phylogenetic inference of FolP/Sul and GlmM protein sequences clearly establishes that sul1-2 and sul3 genes originated as a mobilization of folP genes present in, respectively, the Rhodobiaceae and the Leptospiraceae, and indicate that the Rhodobiaceae folP gene was transferred from the Leptospiraceae. Analysis of %GC content in folP/sul gene sequences supports the phylogenetic inference results and indicates that the emergence of the Sul motif in chromosomally encoded FolP proteins is ancient and considerably predates the clinical introduction of sulfonamides. In vitro assays reveal that both the Rhodobiaceae and the Leptospiraceae, but not other related chromosomally encoded FolP proteins confer resistance in a sulfonamide-sensitive Escherichia coli background, indicating that the Sul motif is associated with sulfonamide resistance. Given the absence of any known natural sulfonamides targeting DHPS, these results provide a novel perspective on the emergence of resistance to synthetic chemotherapeutic agents, whereby preexisting resistant variants in the vast bacterial pangenome may be rapidly selected for and disseminated upon the clinical introduction of novel chemotherapeuticals.

Highlights

  • Antibiotic resistance is a pressing problem in modern healthcare (Carlet et al, 2014; Rossolini et al, 2014)

  • To identify putative chromosomal homologs of sul1-3 genes, we performed a multiple sequence alignment including any protein sequences with at most 90% similarity to those encoded by sul1-3 genes reported in the literature and by chromosomal folP genes from a representative of each bacterial order

  • Upon the clinical introduction of the relevant antibiotic, selection favors the rapid spread of the resistance determinant

Read more

Summary

Introduction

Antibiotic resistance is a pressing problem in modern healthcare (Carlet et al, 2014; Rossolini et al, 2014). Bacterial cells present several mechanisms to cope with exposure to antibiotics or chemotherapeutic agents, which may be acquired through mutation or, most frequently, via lateral gene transfer on mobile genetic elements (Davies and Davies, 2010). Since these were designed in vitro, it seems unlikely that a large pool of genes conferring resistance to chemotherapeutic agents existed before their introduction After their discovery in the 1960’s, resistance to quinolones was initially rare and limited to chromosomal mutations in DNA gyrase, topoisomerase IV or efflux pumps (Hooper, 1999). The origin of plasmidborne qnr genes has been traced to environmental homologs and these are thought to have derived from genes originally targeting antibiotics, such as microcin B17 (Tran and Jacoby, 2002)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call